FPGA implementation of a wavelet neural network with particle swarm optimization learning

نویسندگان

  • Cheng-Jian Lin
  • Hung-Ming Tsai
چکیده

This paper introduces implementation of a wavelet neural network (WNN) with learning ability on field programmable gate array (FPGA). A learning algorithm using gradient descent method is not easy to implement in an electronic circuit and has local minimum. A more suitable method is the particle swarm optimization (PSO) that is a population-based optimization algorithm. The PSO is similar to the GA, but it has no evolution operators such as crossover and mutation. In the approximation of a nonlinear activation function, we use a Taylor series and a look-up table (LUT) to achieve a more accurate approximation. The results of the two experiments demonstrate the successful hardware implementation of the wavelet neural networks with the PSO algorithm using FPGA. From the results of the experiment, it can be seen that the performance of the PSO is better than that of the simultaneous perturbation algorithm at sufficient particle sizes. c © 2007 Elsevier Ltd. All rights reserved.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Traffic Signal Prediction Using Elman Neural Network and Particle Swarm Optimization

Prediction of traffic is very crucial for its management. Because of human involvement in the generation of this phenomenon, traffic signal is normally accompanied by noise and high levels of non-stationarity. Therefore, traffic signal prediction as one of the important subjects of study has attracted researchers’ interests. In this study, a combinatorial approach is proposed for traffic signal...

متن کامل

Discrete Multi Objective Particle Swarm Optimization Algorithm for FPGA Placement (RESEARCH NOTE)

Placement process is one of the vital stages in physical design. In this stage, modules and elements of circuit are placed in distinct locations according to optimization basis. So that, each placement process tries to influence on one or more optimization factor. In the other hand, it can be told unequivocally that FPGA is one of the most important and applicable devices in our electronic worl...

متن کامل

Optimization of ICDs' Port Sizes in Smart Wells Using Particle Swarm Optimization (PSO) Algorithm through Neural Network Modeling

Oil production optimization is one of the main targets of reservoir management. Smart well technology gives the ability of real time oil production optimization. Although this technology has many advantages; optimum adjustment or sizing of corresponding valves is still an issue to be solved. In this research, optimum port sizing of inflow control devices (ICDs) which are passive control valves ...

متن کامل

Optimal Rotor Fault Detection in Induction Motor Using Particle-Swarm Optimization Optimized Neural Network

This study examined and presents an effective method for detection of failure of conductor bars in the winding of rotor of induction motor in low load conditions using neural networks of radial-base functions. The proposed method used Hilbert method to obtain the stator current signal push. The frequency and signal amplitude of the push stator were used as the input of the neural network and th...

متن کامل

Time-series prediction using a local linear wavelet neural network

A local linear wavelet neural network (LLWNN) is presented in this paper. The difference of the network with conventional wavelet neural network (WNN) is that the connection weights between the hidden layer and output layer of conventional WNN are replaced by a local linear model. A hybrid training algorithm of particle swarm optimization (PSO) with diversity learning and gradient descent metho...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Mathematical and Computer Modelling

دوره 47  شماره 

صفحات  -

تاریخ انتشار 2008